Entomolojide Yapay Sinir Ağlarının Kullanımı

Author:

KÜÇÜKTOPCU Yeter1ORCID,SARUHAN İslam2ORCID,TUNCER Celal2ORCID,AKÇA İzzet2ORCID

Affiliation:

1. Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü

2. ONDOKUZ MAYIS ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, BİTKİ KORUMA BÖLÜMÜ

Abstract

Son yıllarda, entomoloji alanında yapay sinir ağları (YSA) önemli bir araç haline gelmiş ve kullanımı hızla artmıştır. Entomologlar, YSA'nın sunduğu olanaklardan pek çok alanda yararlanmaktadır. YSA'nın kullanımı; böcek türlerinin tahmininden başlayarak, böcek popülasyonlarının takibine, zararlı böceklerin belirlenmesine ve böcek davranışlarının modellemesine kadar çeşitli uygulamalara olanak tanımaktadır. Özellikle tarım alanlarında yapılan gözlemler ve ölçümler sonucunda elde edilen büyük veri kümelerinin hızlı ve hassas bir şekilde analiz edilmesi, böceklerle mücadele stratejilerinin geliştirilmesinde entomologlara önemli bir avantaj sağlamaktadır. Bu derleme, YSA'nın entomolojide kullanılabilir ve etkili bir araç olduğunu göstermekte ve YSA'nın gelecekteki uygulama potansiyeline genel bir bakış sunmaktadır. Ancak, YSA teknolojisinin geliştirilmesi ve uygulanması süreklilik arz eden bir çaba gerektirmektedir. YSA uygulamalarında eğitim sürecine özen gösterilmeli ve her yeni çalışmanın sinir ağı eğitimine katkı sağlayacağı unutulmamalıdır. Bu nedenle, entomologlar YSA'nın potansiyelini daha fazla keşfetmeye odaklanmalı ve bu yenilikçi yöntemi entomolojide daha geniş ölçekte kullanmaya yönelik çalışmalar yapmalıdır. Böylece; böceklerin doğası hakkında daha derin bilgilere ulaşmak, çevre dostu mücadele stratejileri geliştirmek, tarım alanlarında daha sürdürülebilir ve verimli üretim süreçleri geçirmek mümkün olacaktır. YSA'nın entomoloji alanında ilerlemesi, hem bilimsel araştırmalara hem de tarım sektörüne önemli katkılar sağlayacaktır.

Publisher

Ordu University

Reference72 articles.

1. Alhady, S. S. N. ve Kai, X. Y. (2018). Butterfly species recognition using artificial neural network. In Hassan, M. (eds), Intelligent Manufacturing & Mechatronics. Lecture Notes in Mechanical Engineering (pp. 449-457). Springer. https://doi.org/10.1007/978-981-10-8788-2_40

2. Altay, O. ve Özgen, I. (2021). Predicting the LD50 values of two different vinegars whose insecticidal effect was determined by the spraying method against Tribolium confusum Jacquelin du val (Coleoptera: Tenebrionidae) using different artificial neural network models. Zoological and Entomological Letters, 1(2), 39-47. https://www.zoologicaljournal.com/article/16/1-2-4-122.pdf

3. Ayob, M. Z. ve Chesmore, E. D. (2013). Probabilistic Neural Network for the Automated Identification of the Harlequin Ladybird (Harmonia Axyridis). In Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds), Multi-disciplinary Trends in Artificial Intelligence (pp. 25-35). Springer. https://doi.org/10.1007/978-3-642-44949-9_3

4. Bagnères, A. G., Rivière, G. ve Clément, J. L. (1998). Artificial neural network modeling of caste odor discrimination based on cuticular hydrocarbons in termites. Chemoecology, 8(4), 201-209. https://doi.org/10.1007/s000490050026

5. Bauch, C. ve Rath, T. (2004). Prototype of a vision based system for measurements of white fly infestation. In International Conference on Sustainable Greenhouse Systems-Greensys 2004 (pp. 773-780). ISHS Acta Horticulturae 691. https://doi.org/10.17660/ActaHortic.2005.691.95

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3