The sound of music: from increased personalization to therapeutic values

Author:

Caceres Ileana, ,Ghosh Souvick,

Abstract

Music providers like Spotify leverage music recommendation systems to connect users with relevant music. Based on content-based and collaborative-filtering statistical methods, these machine learning algorithms quantify user-song probabilities and present the highest-ranked songs. However, most music providers do not fully address their users’ music seeking and retrieval needs. Likewise, the fields of Recommender Systems (RecSys), Music Recommendation Systems (MRS) and Music Information Retrieval (MIR) remain disconnected from real-world use cases of music seeking. In this conceptual paper, we review the literature of the RecSys, MRS, MIR and Music Therapy (MT) academic fields. We discuss trends towards greater user control and personalization in the MRS and MIR fields and the connections between MT and positive health outcomes such as reductions in stress, anxiety and heart rate. We argue that greater control and visibility into the characteristics of songs and recommended items can generate positive downstream benefits. We recommend features that empower users to better seek, find, store, retrieve and learn from their musical catalogs.Results. We suggest design enhancements that recognize music’s wider psychological and physiological benefits and create opportunities to build domain knowledge. Unlocking music’s myriad benefits through the enhancements proposed would catalyze positive outcomes for business stakeholders, users and society.

Publisher

University of Boras, Faculty of Librarianship, Information, Education and IT

Subject

Library and Information Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3