Fiber reinforcement effectiveness in two different sand specimens

Author:

Conceição MuriloORCID,Pinto CamillaORCID,Carvalho MiriamORCID,Machado SandroORCID

Abstract

Fiber Reinforced Soils (FRS) are mixtures of discrete fibers with the soil to create a composite with improved mechanical properties compared to unreinforced material that depends on several soil and fiber properties. Therefore, comparative studies are needed to better understand their influence on FRS mechanical response. This paper analyzes the results of a comprehensive triaxial testing program performed on specimens of two different sands at the same relative density focusing on how the grain size distribution affects the composite behavior in terms of shear strength and dilatancy. It is shown that the grain size curve’s uniformity coefficient (Cu) is one of the critical variables controlling FRS’s dilatancy. Dune sand specimens (Cu = 1.79) presented dilatancy even for confining stresses as high as 300 kPa. The shear gains due to reinforcement were controlled by fiber length (L) and percentage (Pf), and size and shape of soil particles. River sand specimens with L = 51 mm and 1% fiber addition (dry mass) presented increments of 47.7 kPa in soil cohesion and a 5.2o increase in the soil friction angle compared to unreinforced material.

Publisher

ABMS - Brazilian Association for Soil Mechanics and Geotechnical Engineering

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the mechanical behaviour of fibre reinforced sands;Geomechanics and Geoengineering;2024-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3