Influence of coconut fiber on the microstructural, mechanical and hydraulic behavior of unsaturated compacted soil

Author:

Gomes FernandaORCID,Motta MarianaORCID,Bernardes GeorgeORCID,Soares PauloORCID

Abstract

This study aimed to evaluate the influence of the addition of coconut (coir) fibers on the microstructural, hydraulic and mechanical behavior of an unsaturated compacted soil. Specimens were molded and compacted, forming composites with 0%, 0.1%, 0.5% and 1% fiber in relation to their dry mass. The characterization of pores from the soil and fiber soil mixtures was performed by the Mercury Intrusion Porosimetry tests. Suction values were obtained through the filter paper method and soil water retention curves were adjusted with the Durner model due to the bimodal behavior. Tensile strength values were obtained from the indirect tensile strength test (Brazilian tensile test) for specimens with different suction values. It was found that the increase in fiber content in the material lead to a non-linear increase in macropores, which affected both the hydraulic and mechanical behavior of the soil. Furthermore, the shape of the soil water retention curve was preserved, but there were changes in the values of first and second air entry and residual suction. The tensile strength was negatively influenced, reaching a reduction of about 30% in the situation with higher fiber content. However, for higher levels, the behavior of the soil changed from brittle to ductile, increasing the supported deformations.

Publisher

ABMS - Brazilian Association for Soil Mechanics and Geotechnical Engineering

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3