Technical feasibility analysis of using phosphogypsum, bentonite and lateritic soil mixtures in hydraulic barriers

Author:

Borges YagoORCID,Oliveira BismarckORCID,Boscov Maria EugêniaORCID,Mascarenha MárciaORCID

Abstract

Every year, millions of tons of phosphogypsum, a by-product of the fertilizer industry, are produced worldwide. As just a small part of this amount is reused, this study analyzed a new alternative to reuse this material in geotechnical works, in mixtures with lateritic soil and bentonite for the construction of liners for sanitary landfills. Four compositions were tested: 100% soil, 10% phosphogypsum + 90% soil, 10% phosphogypsum + 3% bentonite + 87% soil and 10% phosphogypsum + 6% bentonite + 84% soil. X-ray diffraction and scanning electron microscopy were used to analyze the mineralogy, while the hydromechanical performance was evaluated through compaction, hydraulic conductivity, and unconfined compressive tests. Modified free swell tests and modified Atterberg limits were used to test compatibility with NaCl, NaOH and ethanol. A solubilization test was carried out to investigate the presence of inorganic contaminants in the phosphogypsum. The addition of phosphogypsum increased the optimum water content in the compaction curves, did not change the hydraulic conductivity and decreased the unconfined compressive strength of the mixtures. The addition of bentonite increased the optimum water content, reduced the hydraulic conductivity, and increased the unconfined compressive strength. The possibility of dissolution of gypsite (main component of phosphogypsum), the problems that may arise from the interaction with chemical products, and the risk of manganese release in the subsoil lead to the conclusion that phosphogypsum is not suitable to be used in liners. However, soil-bentonite-phosphogypsum mixtures were considered eligible materials to be used in impermeable layers of other geotechnical works.

Publisher

ABMS - Brazilian Association for Soil Mechanics and Geotechnical Engineering

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3