Abstract
Letφbe an analytic self-map of the open unit disk D andgbe an analytic function on D. The generalized composition operator induced by the mapsgandφis defined by the integral operatorI(g,φ)f(z) =∫0zf′(φ(ς))g(ς)dς. Given an admissible weightω, the weighted Hilbert spaceHωconsists of all analytic functionsfsuch that ∥f∥2Hω= |f(0)|2+∫D|f′(z)|2ω(z)dA(z) is finite. In this paper, we characterize the boundedness and compactness of the generalized composition operators on the spaceHωusing theω-Carleson measures. Moreover, we give a lower bound for the essential norm of these operators.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献