Abstract
Given a finite metabelian group G, whose central quotient is abelian (not cyclic) group of order p2, p odd prime, the objective of this paper is to obtain a complete algebraic structure of semisimple group algebra Fq[G] in terms of primitive central idempotents, Wedderburn decomposition and the automorphism group.
Subject
General Arts and Humanities
Reference9 articles.
1. G.K. Bakshi, S. Gupta, I.B.S. Passi, Semisimple metacyclic group algebras, Proc. Indian Acad. Sci. (Math Sci. ). 121(4) (2011) 379-396.
2. G.K. Bakshi, S. Gupta, I.B.S. Passi, The structure of finite Semisimple metacyclic group algebras, J. Ramanujan Math Soc. 28(2) (2013) 141-158.
3. G.K. Bakshi, S. Gupta, I.B.S. Passi, The algebraic structure of Finite metabelian group algebras, Comm. Algebra. 43(6) (2015) 2240-2257.
4. G.K. Bakshi, R.S. Kullkarni, I.B.S. Passi, The rational group algebra of a finite group, J. Alg. Appl. 12(3) (2013).
5. O. Broche, Á. del Río, Wedderburn decomposition of finite group Algebras, Finite Fields Appl. 13(1) (2007) 71-79.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献