Conjugate Effects of Buoyancy and Magnetic Field on Heat and Fluid Flow Pattern at Low-to-Moderate Prandtl Numbers

Author:

Djebali Ridha1ORCID,Abbassi Mohamed Ammar1,Rouahi Ahlem2

Affiliation:

1. University Gafsa

2. University of Tunis El Manar

Abstract

This study aims to present a numerical investigation of unsteady two-dimensional natural convection of an electrically conducting fluid in a square medium under externally imposed magnetic field. A temperature gradient is applied between the two opposing side walls parallel to y-direction, while the floor and ceiling parallel to x-direction are kept adiabatic. The coupled momentum and energy equations associated with the Lorentz ‘decelerating’ force as well as the buoyancy force terms are solved using the single relaxation lattice Boltzmann (LB) approach. The flow is characterized by the Rayleigh number Ra (103-106), the Prandtl number Pr (0.01-10), the Hartman number Ha (0-100) determined by the strength of the imposed magnetic field and its tilt angle from x-axis ranging from 0° to 90°. The changes in the buoyant flow patterns and temperature contours due to the effects of varying the controlling parameters and associated heat transfer are examined. It was found that the developed thermal LB model gives excellent results by comparison with former experimental and numerical findings. Starting from the values 105 of the Rayleigh number Ra and Ha=0, the flow is unsteady multicellular for low Prandtl number typical of liquid metal. Increasing gradually Pr, the flow undergoes transition to steady bicellular. The transition occurs at a threshold value between Pr=0.01 and 0.1. Increasing more the Prandtl number, the flow structure is distorted due to the viscous forces which outweigh the buoyancy forces and a thermal stratification is clearly established. For high Hartman number, the damping effects suppress the unsteady behaviour and results in steady state with extended unicellular pattern in the direction of Lorentz force and the heat transfer rate is reduced considerably.

Publisher

SciPress Ltd

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3