Pressure Effects on the Optical Properties of LuVO4:Eu3+ Nanoparticles

Author:

Jovanić Brana1,Bettinelli Marco2,Radenković Bozidar1,Despotović-Zrakić Marijana1,Piccinelli Fabio1,Bogdanović Zorica1

Affiliation:

1. University of Belgrade

2. Università di Verona

Abstract

The effect of hydrostatic pressure (varying up to 110 kbar) at the room temperature on three lines at 594nm, 615nm and 619nm positions in emission spectra and fluorescence lifetime t of the Eu3+ for 0-2 line (5D07F2 transition) in LuVO4: Eu3+ nanoparticles was studied. The results showed that the increase of the pressure induced lines red shift towards longer wavelengths for all considered lines with different rate. Also, the fluorescence lifetime τ for 5D07F2 transition nonlinearly decreased with pressure in the considered pressure range. Line positions and fluorescence lifetime τ, were explained by a model which took into account the effect of high pressure on: refractive index of crystal; compression, polarizability of the crystal and individual ions. Satisfactory agreement between measured and theoretical predicted values with error less than 2% was obtained.

Publisher

SciPress Ltd

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3