The Application of Artificial Neural Network in Prediction of the Performance of Spark Ignition Engine Running on Ethanol-Petrol Blends

Author:

Nwufo Olisaemeka C.1,Okwu Modestus2,Nwaiwu Chidiebere F.1,Igbokwe Johnson O.1,Nwafor O. Martin I.1,Anyanwu Emmanuel Enyioma1

Affiliation:

1. Federal University of Technology

2. Federal University of Petroleum Resources

Abstract

The performance analysis of a single cylinder spark ignition engine fuelled with ethanol – petrol blends were carried out successfully at constant load conditions. E0 (Petrol), E10 (10% Ethanol, 90% Petrol), E20 (20% Ethanol, 80% Petrol) and E30 (30% Ethanol, 70% Petrol) were used as fuel. The Engine speed, mass flow rate, combustion efficiency, maximum pressure developed, brake specific fuel consumption and Exhaust gas temperature values were measured during the experiment. Using the experimental data, a Levenberg Marquardt Artificial Neural Network algorithm and Logistic sigmoid activation transfer function with a 4–10–2 model was developed to predict the brake specific fuel consumption, maximum pressure and combustion efficiency of G200 IMEX spark ignition engine using the recorded engine speed, mass flow rate, biofuels ratio and exhaust gas temperature as input variables. The performance of the Artificial Neural Network was validated by comparing the predicted data with the experimental results. The results showed that the training algorithm of Levenberg Marquardt was sufficient enough in predicting the brake specific fuel consumption, combustion pressure and combustion efficiency of the test engine. Correlation coefficient values of 0.974, 0.996 and 0.995 were obtained for brake specific fuel consumption, combustion efficiency and pressure respectively. These correlation coefficient obtained for the output parameters are very close to one (1) showing good correlation between the Artificial Neural Network predicted results and the experimental data while the Mean Square Errors were found to be very low (0.00018825 @ epoch 10 for brake specific fuel consumption, 1.0023 @ epoch 3 for combustion efficiency and 0.0013284@ epoch 5 for in-cylinder pressure). Therefore, Artificial Neural Network toolbox called up from MATLAB proved to be a useful tool for simulation of engine parameters. Artificial Neural Network model provided accurate analysis of these complex problems and has been found to be very useful for predicting the performance of the spark ignition engine. Thus, this has proved that Artificial Neural Network model could be used for predicting performance values in internal combustion engines, in this way it would be possible to conduct time and cost efficient studies instead of long experimental ones.

Publisher

SciPress Ltd

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3