PIG FARMS AND THEIR SURROUNDINGS AS A FACTOR IN THE SPREAD OF ANTIMICROBIAL RESISTANCE

Author:

Dimitrova Lyudmila1,Zaharieva Maya1,Najdenski Hristo1

Affiliation:

1. The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences

Abstract

In recent decades, in modern intensive animal husbandry, there has been a worrying trend towards the selection and spread of bacterial strains resistant to antibiotics. This global phenomenon has not only a certain negative effect on therapeutic practice, but also poses a serious risk to the spread of resistance in the food chain and in humans. Various genera from the family Enterobacteria like Salmonella, Shigella, Klebsiella, Yersinia, Citrobacter, etc. and especially Escherichia coli have a special place in this process. The most commonly used antibiotics for treatment of patients with complicated Salmonella infections are ceftriaxone and ciprofloxacin, to which the bacteria has already developed antibiotic resistance. For Escherichia coli, significantly increased resistance is developed to the third-generation cephalosporins, aminoglycosides, as well as combined resistance to three key antimicrobial groups (fluoroquinolones, third-generation cephalosporins and aminoglycosides). Resistance among Yersinia spp. against tetracyclines and fluorochinolones has been reported to the scientific community in numerous studies on human and animal isolates. By using the raw manure as fertilizer, these microorganisms may be transmitted to soil, wastewater or others environmental niches. Further, they can be transmitted via the food chain to humans and animals. Considering that the horizontal gene transfer is one of the most important mechanisms for transmitting of antimicrobial resistance, then after consumption of contaminated food, water, etc., genetically determined antibiotic resistance in animals can easily affect resistance among people, which makes vital drugs ineffective against serious illnesses. For the possible spread of antimicrobial resistance in pigs and related ecological niches - pig farms, manure lagoons, wastewater and soils, large-scale studies are being conducted to clarify their ecological and health significance. In addition, the results obtained will contribute to the development of an effective national strategy for the control of antimicrobial resistance.

Publisher

National Society of Ecological Engineering and Environment Protection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3