CARBON-BASED CATHODE CATALYSTS USED IN MICROBIAL FUEL CELLS FOR WASTEWATER TREATMENT AND ENERGY RECOVERY

Author:

Boukoureshtlieva Reneta1,Stankulov Toma1,Momchilov Anton1

Affiliation:

1. Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

In the past 20 years Microbial fuel cells (MFCs) have been extensively studied regarding the possibility of transforming organic waste directly into electricity. There are significant differences between MFCs and conventional low temperature Fuel Cells (FCs), which make MFCs attractive: biotic catalyst at the anode; the anodic fuel is complex organic waste; MFCs operate under mild reaction conditions (neutral pH, temperature and pressure), close to ambient levels as optimum. Like chemical fuel cells, MFCs are composed of anode and cathode. Oxygen is an ideal electron acceptor for MFCs because of its high redox potential, availability, and sustainability. However, the Oxygen Reduction Reaction (ORR) is kinetically sluggish, resulting in a large proportion of potential loss. Also, working conditions are quite different because of the type of complex media in which MFCs operate. In order to overcome these limitations, catalysts are often used to lower the overpotentials and accelerate the kinetics of the oxygen reduction reaction. One of the main challenges is the development of efficient and stable cathode catalysts for MFCs. By far, Pt and Pt-based catalysts (PGMs) have been extensively used, due to their catalytic efficiency in gas-diffusion electrodes. But the high cost and low durability have significantly lowered their utilization in MFCs. A variety of non-precious metal catalysts have been developed for MFC applications including carbon-based catalysts, carbon supported composite catalysts, Me-based catalysts and biocatalysts. It is supposed that the ORR catalyst used for wastewater treatment in MFCs is simple to synthesize, cost-effective, durable after long-term operation in wastewater, tolerant to poisoning and able to restore catalytic activity after cleaning. In this regard carbon-based catalyst may be the most promising candidate for practical applications. This study reviews different carbon-based ORR catalysts for MFC applications for wastewater treatment and energy recovery.

Publisher

National Society of Ecological Engineering and Environment Protection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3