Abstract
In this paper a new approach to the design of the high-speed binary-to-residue converter is proposed that allows the attaining of high pipelining rates by eliminating memories used in modulo m generators. The converter algorithm uses segmentation of the input binary word into 2-bit segments. The use and effects of the input word segmentation for the synthesis of converters for five-bit moduli are presented. For the number represented by each segment, the modulo m reduction using a segment modulo m generator is performed. The use of 2-bit segments substantially reduces the hardware amount of the layer of input modulo m generators. The generated residues are added using the multi-operand modulo m adder based on the carry-save adder (CSA) tree, reduction of the number represented by the output CSA tree vectors to the 2m range and fast two-operand modulo m additions. Hardware amount and time delay analyses are also included.
Publisher
Gdynia Maritime University
Reference14 articles.
1. Alia, G., Martinelli, E., 1990, Short Note: VLSI Binary-Residue Converters for Pipelined Processing, The Computer Journal, Vol. 33, No. 5, pp. 473–475.
2. Avižienis, A., 1964, A Set of Algorithms for a Diagnosable Arithmetic Unit, Jet Propulsion Laboratory, California Institute of Technology, USA.
3. Avižienis A., 1971, Arithmetic Codes: Cost and Effectiveness Studies for Applications in Digital System Design, IEEE Trans. Comput., Vol. C-20, pp. 1322–1331.
4. Cardarilli, G.C., Nannarelli, A., Re, M., 2007, Residue Number System for Low-power DSP Applications, Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, IEEE, pp. 1412–1416.
5. Czyżak, M., 2004, High-Speed Binary-to-Residue Converter with Improved Architecture, 27th International Conference on Fundamentals of Electrotechnics and Circuit Theory, Gliwice-Niedzica, pp. 431–436.