A comparative analysis of learning techniques in the context of Turkish spam detection

Author:

Şengel Öznur1ORCID

Affiliation:

1. İSTANBUL KÜLTÜR ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Short Message Service (SMS) is a mobile messaging tool used by billions of people to communicate via a mobile phone. However, due to the lack of proper message filtering techniques, this form of communication is vulnerable to unwanted and junk messages. This paper compared SMS spam detection approaches based on machine learning methods such as Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Multinominal Naïve Bayes (MNB), Logistic Regression (LR), and Support Vector Machines (SVM) and deep learning methods such as Convolutional Neural Networks (CNNs), Artificial Neural Networks (ANNs), and Long Short Term Memory (LSTM) in terms of f-score, accuracy, recall, precision, and a confusion matrix constructed for each strategy. The study tested two different preprocessing methods on two different Turkish SMS datasets to evaluate the approaches. The aim of this study is to contribute to the issue of spam filtering in Turkey. The results indicate that the highest accuracy values were achieved with Support Vector Machine (99.03%) using the first preprocessing method and Logistic Regression and Random Forest (98.07%) using the second preprocessing method on the BigTurkishSMS dataset, a combination of the two datasets used. As is the case with the majority of machine learning algorithms, the second preprocessing of the data set yielded superior results in deep learning models. The ANN model achieved the highest accuracy, with a score of 97.41%. The study employed a comparison of machine learning and deep learning techniques on Turkish SMS datasets, which will provide valuable insights for researchers working in this field.

Publisher

Batman Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3