MORPHOLOGY AND THERMAL PROPERTIES OF ZEOLITE MECHANOCHEMICALLY MODIFIED BY Ca, Zn AND Mn(II) CATIONS

Author:

HALAICHAK Svitlana, ,GOLOVCHUK Myroslav,DATSKO Bohdan,YATSYSHYN Mykhailo,KORNIY Sergiy, , , ,

Abstract

An important direction of new technologies of corrosion protection of metals is the use of inhibitory pigments in the composition of paints and varnishes, which are tolerant to the environment, have high efficiency and can replace chromates. Promising anti-corrosion pigments for paints and varnishes are ion-exchange substances, in particular modified zeolites, which will provide optimal selective resistance to aggressive environmental influences. In this work the dispersion and morphology of complex pigments based on synthetic zeolite and monophosphates of calcium, zinc and manganese are investigated. It was found that the modification of zeolites by metal monophosphates by mechanochemical method in a ball mill for 60 min at a speed of 200 rpm leads to decrease in fraction to 2.0 μm by ~44%… 64% and an increase from 2.0 to 10.0 μm by ~60%. The fraction up to 2.0 μm is represented by particles of irregular globular shape > 10.0 μm - agglomerates. Thermogravimetric studies have shown that all synthesized complex pigments are characterized by thermal stability. Thermolysis is characterized by 4 stages, which correspond to the removal of physically adsorbed water, chemically sorbed water, dehydroxylation of the surface by cleavage of OH groups, and phase transitions. Modification with metal monophosphates increases the thermal stability of pigments in the sequence Na-A: Ca(H2PO4)2 - Na-A: Zn(H2PO4)2 - Na-A: Mn(H2PO4)2. Thermolysis of samples in the temperature range from 15 to 700 °С is took place during four stages, most intensively at temperatures up to 400 °С. During mechanochemical dispersion of zeolites with calcium, zinc and manganese monophosphates, the amount of physically adsorbed water increases by ~18… ~41%, and chemically sorbed water decreases by ~19… ~41%. The specific surface area of zeolite Na-A: Ca(H2PO4)2 increases by ~8%, and Na-A: Zn(H2PO4)2 and Na-A: Mn(H2PO4)2 decreases by ~50% and ~22%, respectively. This may be due to the radii of the metal cations and the fraction content up to 2.0 μm when grinding zeolites. Based on the obtained results, the synthesized zeolites can be recommended for further studies of their inhibitory properties as pigments in the composition of paints and varnishes.

Publisher

Shevchenko Scientific Society

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3