Breast Cancer Risk Prediction Using Deep Learning
Author:
Affiliation:
1. From the Department of Radiology, Inha University Hospital and School of Medicine, 27 Inhang-ro, Jung-gu, Incheon 22332, South Korea (M.S.B.); and Department of Radiology, Kyung Hee University Hospital, Seoul, South Korea (H.G.K.)
Publisher
Radiological Society of North America (RSNA)
Subject
Radiology, Nuclear Medicine and imaging
Link
http://pubs.rsna.org/doi/pdf/10.1148/radiol.2021211446
Reference10 articles.
1. Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection Among Women With Dense Breasts Undergoing Screening
2. Breast cancer risk models: a comprehensive overview of existing models, validation, and clinical applications
3. Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment
4. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction
5. Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multiview deep learning networks based on automated breast volume scanner images for identifying breast cancer in BI-RADS 4;Frontiers in Oncology;2024-09-06
2. Assessing breast cancer volume alterations post-neoadjuvant chemotherapy through DenseNet-201 deep learning analysis on DCE-MRI;Journal of Radiation Research and Applied Sciences;2024-09
3. MRI‐Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN‐RNN Model;Journal of Magnetic Resonance Imaging;2024-01-11
4. A validation of an entropy-based artificial intelligence for ultrasound data in breast tumors;BMC Medical Informatics and Decision Making;2024-01-02
5. Predicting Neoadjuvant Chemotherapy Response and High-Grade Serous Ovarian Cancer From CT Images in Ovarian Cancer with Multitask Deep Learning: A Multicenter Study;Academic Radiology;2023-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3