Development and evaluation of interpretable machine learning regressors for predicting femoral neck bone mineral density in elderly men using NHANES data

Author:

He Wen,Chen Song,Fu Xianghong,Xu Licong,Xie Jun,Wan Jinxing

Abstract

Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In addressing the critical need for early identification of osteoporosis through routine screening of femoral neck bone mineral density (FNBMD), this study developed a user-friendly prediction model aimed at men aged 50 years and older, a demographic often overlooked in osteoporosis screening. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), the study involved outlier detection and handling, missing value imputation via the K nearest neighbor (KNN) algorithm, and data normalization and encoding. The dataset was split into training and test sets with a 7:3 ratio, followed by feature screening through the least absolute shrinkage and selection operator (LASSO) and the Boruta algorithm. Eight different machine learning algorithms were then employed to construct predictive models, with their performance evaluated through a comprehensive metric suite. The random forest regressor (RFR) emerged as the most effective model, characterized by key predictors such as age, body mass index (BMI), poverty income ratio (PIR), serum calcium, and race, achieving a coefficient of determination (R²) of 0.218 and maintaining robustness in sensitivity analyses. Notably, excluding race from the model resulted in sustained high performance, underscoring the model’s adaptability. Interpretations using Shapley additive explanations (SHAP) highlighted the influence of each feature on FNBMD. These findings indicate that our predictive model effectively aids in the early detection of osteoporosis, potentially reducing the incidence of OFNFs in this high-risk population.

Publisher

Association of Basic Medical Sciences of FBIH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3