Low-rank matrix approximations over canonical subspaces

Author:

Dax AchiyaORCID

Abstract

In this paper we derive closed form expressions for the nearest rank-\(k\) matrix on canonical subspaces.    We start by studying three kinds of subspaces.  Let \(X\) and \(Y\) be a pair of given matrices. The first subspace contains all the \(m\times n\) matrices \(A\) that satisfy \(AX=O\). The second subspace contains all the \(m \times n\) matrices \(A\) that satisfy \(Y^TA = O\),  while the matrices in the third subspace satisfy both \(AX =O\) and \(Y^TA = 0\).   The second part of the paper considers a subspace that contains all the symmetric matrices \(S\) that satisfy \(SX =O\).  In this case, in addition to the nearest rank-\(k\) matrix we also provide the nearest rank-\(k\) positive  approximant on that subspace.   A further insight is gained by showing that the related cones of positive semidefinite matrices, and  negative semidefinite matrices, constitute a polar decomposition of this subspace. The paper ends with two examples of applications.  The first one regards the problem of computing the nearest rank-\(k\) centered matrix, and adds new insight into the PCA of a matrix. The second application comes from the field of Euclidean distance matrices.  The new results on low-rank positive approximants are used to derive an explicit expression for the nearest source matrix.  This opens a direct way for computing the related positions matrix.

Publisher

Academia Romana Filiala Cluj

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3