Author:
Laskri Yamina,Benzine Rachid
Abstract
Let \(\beta \) denote a positive Szeg? measure on the unit circle \(\Gamma \) and \(\delta _{z_{k}}\) denote an anatomic measure
(\(\delta \) Dirac) centered on the point \(z_{k}.\) We study, for all \(p>0,\) the asymptotic behavior of \(L_{p}\) extremal polynomials with respect to a measure of the type
\[
\alpha =\beta +\sum_{k=1}^{\infty }A_{k}\delta _{z_{k}},
\]
where \(\left\{ z_{k}\right\} _{k=1}^{\infty }\) is an infinite
collection of points outside \(\Gamma \).
Publisher
Academia Romana Filiala Cluj
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Mathematics (miscellaneous)
Reference29 articles.
1. Bello Hernandez, M., Marcellan, F. and Minguez Ceniceros, J., Pseudo uniform convexity in Hp and some extremal problems on Sobolev spaces, Complex variables, 48, no. 5, pp. 429-440, 2003, https://doi.org/10.1080/0278107031000097023
2. Benzine, R., Asymptotic behavior of orthogonal polynomials corresponding to a measure with infinite discrete part off a curve, J. Approx. Theory, 89, pp. 257-265, 1997, https://doi.org/10.1006/jath.1997.3041
3. Bernstein, S.N., Sur les polynômes orthogonaux relatifs à un segment fini I, II, J. Math. Pures Appl., 9, pp. 127-177, 1930; 10, pp. 219-286, 1931.
4. Duren, P.L., Theory of H^{p} spaces, Academic Press. New York, 1970.
5. Geronimo, J.S. and Case, K.M., Scattering theory and polynomials orthogonal on the real line, Trans. Amer. Math. Soc., 258, pp. 467-494, 1980, https://doi.org/10.1090/s0002-9947-1980-0558185-4