Approximation of the Hilbert transform in the Lebesgue spaces

Author:

Aliev Rashid,Alizade Lale

Abstract

The Hilbert transform plays an important role in the theory and practice of signal processing operations in continuous system theory because of its relevance to such problems as envelope detection and demodulation, as well as its use in relating the real and imaginary components, and the magnitude and phase components of spectra. The Hilbert transform is a multiplier operator and is widely used in the theory of Fourier transforms. The Hilbert transform is the main part of the singular integral equations on the real line. Therefore, approximations of the Hilbert transform are of great interest. Many papers have dealt with the numerical approximation of the singular integrals in the case of bounded intervals. On the other hand, the literature concerning the numerical integration on unbounded intervals is by far poorer than the one on bounded intervals. The case of the Hilbert Transform has been considered very little. This article is devoted to the approximation of the Hilbert transform in Lebesgue spaces by operators which introduced by V.R.Kress and E.Mortensen to approximate the Hilbert transform of analytic functions in a strip. In this paper, we prove that the approximating operators are bounded maps in Lebesgue spaces and strongly converges to the Hilbert transform in these spaces.

Publisher

Academia Romana Filiala Cluj

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3