Abstract
The early contributions to B-spline theory by Tiberiu Popoviciu and by Liubomir Chakalov are recalled.
Publisher
Academia Romana Filiala Cluj
Reference9 articles.
1. [B80] W. Boehm, Inserting new knots into B-spline curves, Computer-Aided Design, 12 (1980) no. 4, pp.199-201, http://dx.doi.org/10.1016/0010-4485(80)90154-2
2. [BP03] C. de Boor and A. Pinkus, The B-spline recurrence relations of Chakalov and of Popoviciu, J. Approx. Theory, 124 (2003) no. 1, pp.115-123, http://dx.doi.org/10.1016/S0021-9045(03)00117-5
3. [C38] L. Chakalov, On a certain presentation of the Newton divided differences in interpolation theory and it applications, Annuaire Univ. Sofia, Fiz. Mat. Fakultet, 34 (1938), pp.353-394 (in Bulgarian).
4. [Ma70] M.J. Marsden, An identity for spline functions with applications to variation-diminishing spline approximation, J. Approx. Theory, 3 (1970), pp.7-49, http://dx.doi.org/10.1016/0021-9045(70)90058-4
5. [Me74] G. Meinardus, Bemerkungen zur Theorie der B-Splines, in Spline-Funktionen (K. Bohmer, G. Meinardus, and W. Schempp Eds.), Bibliographisches Institut (Mannheim), 1974, pp.165-175.