Abstract
Starting from the one-parameter dependent linear polynomial Stancu operator, we consider the related polynomial curve scheme with one scalar shape parameter. This scheme, called by us the Stancu curve scheme, generalizes in a suitable manner the classical Bernstein-Bézier scheme and provides more design flexibility by means of the shape parameter.
Publisher
Academia Romana Filiala Cluj
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Mathematics (miscellaneous)
Reference21 articles.
1. Barry, Ph. J., Urn Models, Recursive curve schemes and Computer Aided Geometric Design, Ph.D. thesis, Dept. of Math. Univ. of Utah, Salt Lake City, Utah, 1987.
2. Barry, Ph. J. and Goldman, R. N., Interpolation and approximation of curves and surfaces using Pólya polynomials, Comput. Vision Graphics Image Process., 53, no. 2, pp. 137-148, 1991, https://doi.org/10.1016/1049-9652(91)90057-Q
3. Barry, Ph. J., Goldman, R. N. and DeRose, T. D., B-splines, Pólya curves and duality, J. Approx. Theory, 65, pp. 3-21, 1991, https://doi.org/10.1016/0021-9045(91)90109-N
4. Eggenberger, F. and Pólya G., Über die Statistik Verketteter Vorgänge, Z. Angew. Math. Mech., 1, pp. 279-289, 1923, https://doi.org/10.1002/zamm.19230030407
5. Eisenberg, S. M. and Wood, B., Approximation of analytic functions by Bernstein type operators, J. Approx. Theory, 6, pp. 242-248, 1972, http://oerior.uniud.it/wp-content/uploads/2018/12/EisenbergWood1972.pdf