On Newton's method using recurrent functions under hypotheses up to the second Fréchet derivative

Author:

Argyros Ioannis K.,Hilout Saïd

Abstract

We provide semilocal result for the convergence of Newton method to a locally unique solution of an equation in a Banach space setting using hypotheses up to the second Fréchet-derivatives and our new idea of recurrent functions. The advantages of such conditions over earlier ones in some cases are: finer bounds on the distances involved, and a better information on the location of the solution.

Publisher

Academia Romana Filiala Cluj

Reference11 articles.

1. I.K. Argyros, A Newton-Kantorovich theorem for equations involving m-Fréchet-differentiable operators and applications in radiative transfer, J. Comp. Appl. Math., 131 (2001) nos. 1-2, pp. 149-159, https://doi.org/10.1016/s0377-0427(00)00317-4

2. I.K. Argyros, Concerning the convergence and application of Newton's method under hypotheses on the first and second Fréchet derivative, Comm. Appl. Nonlinear Anal., 11 (2004), pp. 103-119.

3. I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), pp. 374-397, https://doi.org/10.1016/j.jmaa.2004.04.008

4. I.K. Argyros, Convergence and applications of Newton-type iterations, Springer-Verlag Publ., New York, 2008.

5. I.K. Argyros and S. Hilout, Aspects of the computational theory for certain iterative methods, Polimetrica Publisher, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3