Author:
Bo-Yong Long,Yue-Ping Jiang,Yu-Ming Chu
Abstract
In this paper, we discuss the Schur convexity, Schur geometrical convexity and Schur harmonic convexity of the weighted arithmetic integral mean and Chebyshev functional. Several sufficient conditions, and necessary and sufficient conditions are established.
Publisher
Academia Romana Filiala Cluj
Reference25 articles.
1. I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzunsber, Berlin. Math. Ges., 22 (1923), pp. 9-20.
2. A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Academic Press, New York, 1979.
3. W. D. Jiang, Some properties of dual form of the Hamy's symmetric function, J. Math. Inequal., 1(1) (2007), pp. 117-125, https://doi.org/10.7153/jmi-01-12
4. H. N. Shi, Y. M. Jiang and W. D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini means, Comput. Math. Appl., 57(2) (2009), pp. 266-274, https://doi.org/10.1016/j.camwa.2008.11.001
5. K. Z. Guan, Some properties of a class of symmetric functions, J. Math. Anal. Appl., 336(1) (2007), pp. 70-80, https://doi.org/10.1016/j.jmaa.2007.02.064
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献