Author:
Cira Octavian,Cira Cristian Mihai
Abstract
The convergence condition for the simultaneous inclusion methods is \(w^{(0)}<c(a,b,n)d^{(0)}\), where \(w^{(0)}\) is the maximum Weierstrass factor \(W^{0}_k\), \(k\in I_n\), and \(d^{0}\) is the minimum distance between \(z^{(0)}_1\), \(z^{(0)}_2\), \(\ldots\), \(z^{(0)}_n\), the distinct approximations of the simple roots of the polynomial \(\zeta_1\), \(\zeta_2\),\(\,\ldots\), \(\zeta_n\). The i-factor (inequality-factor) is the positive real function \(c(a,b,n)=\tfrac{1}{an+b}\). The article presents the optimum i-factor for the simultaneous inclusion methods Durand-Kerner and Tanabe.
Publisher
Academia Romana Filiala Cluj
Reference33 articles.
1. N. H. Abel, Beweis der Unmoglichkeit, algebraische Gleichungen von hoheren Graden als dem vierten allgemein aufzulosen, J. Reine Angew. Math., 1, Reprinted in Abel, N. H. Œ (Ed. L. Sylow and S. Lie), Christiania (Oslo), Norway, 1881. Reprinted in New York: Johnson Reprint Corp., pp. 66-87, 1988, pp. 65-84, 1826, https://doi.org/10.1515/crll.1826.1.65
2. K. Weierstrass, Neuer Beweis des Satzes, dass jede ganze rationale Funktion einer Veränderlichen dargestellt werden kann als ein Product aus linearen Funktionen dertelben Verändelichen, Ges. Werke, 3, pp. 251-269, 1903. https://doi.org/10.1017/cbo9781139567886.018
3. I. E. Durand, Solutions Numérique des Équations Algébriques. Équations du Type F(x)=0; Racines d'une Polynôme, Masson, Paris, 1, pp. 279-281, 1960.
4. K. Docev, An Alternative Method of Newton for Simultaneous Calculation of All the Roots of a Given Algebraic Equation, Phys. Math. J. Bulgar. Acad. Sci., 5, No. 2, pp. 136-139, 1962 (in bulgarian).
5. W. Börsch-Supan, A posteriori error bounds for the zeros of polynomials, Numer. Math., 5, pp. 380-398, 1963, https://doi.org/10.1007/bf01385904