Bird Strike Analysis on 19 Passenger Aircraft Windshield with Different Thickness and Impact Velocity

Author:

Warsiyanto Budi Aji

Abstract

Abstrct - A Windshield is a component that must be tested to comply with the certification requirements in the bird strike phenomenon based on Civil Aviation Safety Regulations (CASR) subpart 23.775. The purpose of this study is to obtain the thickness of 19 passenger aircraft windshield that meets the certification requirements and determine the dynamic response of the windshield to impact velocity variations. The finite element is used to simulate bird strike phenomena. The elastic-plastic polymethyl methacrylate (PMMA) material with the maximum principal strain failure criterion is used to model the dynamic response of the windshield. Numerical modeling is validated, both with analytical and experimental results which are then used to investigate the effect of variations in windshield thickness and impact velocity. The results obtained that with a thickness of 9 mm, the windshield is able to withstand bird strikes based on cases that have been determined by the regulation. In addition, the impact velocity that causes the dynamic response of the windshield in the elastic, plastic deformation, and the greatest failure is the velocity of 87.5 ms-1(cruising phase). The uppermost of the windshield (fixed) is the weakest part due to the stress concentration.

Publisher

Fakultas Teknologi Kedirgantaraan

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Free Vibration Characteristics of Canadair NF-5 Aircraft Canopy;2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST);2023-06-07

2. Numerical Simulation of Tram Collision with Pedestrian;MATEC Web of Conferences;2022

3. Utilization of the Validated Windshield Material Model in Simulation of Tram to Pedestrian Collision;Materials;2021-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3