Monitoring Early Changes in Tumor Metabolism in Response to Therapy Using Hyperpolarized 13C MRSI in a Preclinical Model of Glioma

Author:

Lim Heeseung,Martínez-Santiesteban Francisco,Jensen Michael D.,Chen Albert,Wong Eugene,Scholl Timothy J.

Abstract

This study shows the use of hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) to assess therapeutic efficacy in a preclinical tumor model. 13C-labeled pyruvate was used to monitor early changes in tumor metabolism based on the Warburg effect. High-grade malignant tumors exhibit increased glycolytic activity and lactate production to promote proliferation. A rodent glioma model was used to explore altered lactate production after therapy as an early imaging biomarker for therapeutic response. Rodents were surgically implanted with C6 glioma cells and separated into 4 groups, namely, no therapy, radiotherapy, chemotherapy and combined therapy. Animals were imaged serially at 6 different time points with magnetic resonance imaging at 3 T using hyperpolarized [1-13C]pyruvate MRSI and conventional 1H imaging. Using hyperpolarized [1-13C]pyruvate MRSI, alterations in tumor metabolism were detected as changes in the conversion of lactate to pyruvate (measured as Lac/Pyr ratio) and compared with the conventional method of detecting therapeutic response using the Response Evaluation Criteria in Solid Tumors. Moreover, each therapy group expressed different characteristic changes in tumor metabolism. The group that received no therapy showed a gradual increase of Lac/Pyr ratio within the tumor. The radiotherapy group showed large variations in tumor Lac/Pyr ratio. The chemo- and combined-therapy groups showed a statistically significant reduction in tumor Lac/Pyr ratio; however, only combined therapy was capable of suppressing tumor growth, which resulted in low endpoint mortality rate. Hyperpolarized 13C MRSI detected a prompt reduction in Lac/Pyr ratio as early as 2 days post combined chemo- and radiotherapies.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3