Comparison of Voxel-Wise Tumor Perfusion Changes Measured with Dynamic Contrast-Enhanced (DCE) MRI and Volumetric DCE CT in Patients with Metastatic Brain Cancer Treated with Radiosurgery

Author:

Coolens Catherine,Driscoll Brandon,Foltz Warren,Pellow Carly,Menard Cynthia,Chung Caroline

Abstract

Dynamic contrast-enhanced (DCE)-MRI metrics are evaluated against volumetric DCE-CT quantitative parameters as a standard for tracer-kinetic validation using a common 4-dimensional temporal dynamic analysis platform in tumor perfusion measurements following stereotactic radiosurgery (SRS) for brain metastases. Patients treated with SRS as part of Research Ethics Board-approved clinical trials underwent volumetric DCE-CT and DCE-MRI at baseline, then at 7 and 21 days after SRS. Temporal dynamic analysis was used to create 3-dimensional pharmacokinetic parameter maps for both modalities. Individual vascular input functions were selected for DCE-CT and a population function was used for DCE-MRI. Semiquantitative and pharmacokinetic DCE parameters were assessed using a modified Tofts model within each tumor at every time point for both modalities for characterization of perfusion and capillary permeability, as well as their dependency on precontrast relaxation times (TRs), T10, and input function. Direct voxel-to-voxel Pearson analysis showed statistically significant correlations between CT and magnetic resonance which peaked at day 7 for Ktrans (R = 0.74, P ≤ .0001). The strongest correlation to DCE-CT measurements was found with DCE-MRI analysis using voxel-wise T10 maps (R = 0.575, P < .001) instead of assigning a fixed T10 value. Comparison of histogram features showed statistically significant correlations between modalities over all tumors for median Ktrans (R = 0.42, P = .01), median area under the enhancement curve (iAUC90) (R = 0.55, P < .01), and median iAUC90 skewness (R = 0.34, P = .03). Statistically significant, strong correlations were found for voxel-wise Ktrans, iAUC90, and ve values between DCE-CT and DCE-MRI. For DCE-MRI, the implementation of voxel-wise T10 maps plays a key role in ensuring the accuracy of heterogeneous pharmacokinetic maps.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3