Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images

Author:

Bradshaw Tyler J.,Zhao Gengyan,Jang Hyungseok,Liu Fang,McMillan Alan B.

Abstract

This study evaluated the feasibility of using only diagnostically relevant magnetic resonance (MR) images together with deep learning for positron emission tomography (PET)/MR attenuation correction (deepMRAC) in the pelvis. Such an approach could eliminate dedicated MRAC sequences that have limited diagnostic utility but can substantially lengthen acquisition times for multibed position scans. We used axial T2 and T1 LAVA Flex magnetic resonance imaging images that were acquired for diagnostic purposes as inputs to a 3D deep convolutional neural network. The network was trained to produce a discretized (air, water, fat, and bone) substitute computed tomography (CT) (CTsub). Discretized (CTref-discrete) and continuously valued (CTref) reference CT images were created to serve as ground truth for network training and attenuation correction, respectively. Training was performed with data from 12 subjects. CTsub, CTref, and the system MRAC were used for PET/MR attenuation correction, and quantitative PET values of the resulting images were compared in 6 test subjects. Overall, the network produced CTsub with Dice coefficients of 0.79 ± 0.03 for cortical bone, 0.98 ± 0.01 for soft tissue (fat: 0.94 ± 0.0; water: 0.88 ± 0.02), and 0.49 ± 0.17 for bowel gas when compared with CTref-discrete. The root mean square error of the whole PET image was 4.9% by using deepMRAC and 11.6% by using the system MRAC. In evaluating 16 soft tissue lesions, the distribution of errors for maximum standardized uptake value was significantly narrower using deepMRAC (−1.0% ± 1.3%) than using system MRAC method (0.0% ± 6.4%) according to the Brown–Forsy the test (P < .05). These results indicate that improved PET/MR attenuation correction can be achieved in the pelvis using only diagnostically relevant MR images.

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3