Hyperpolarized 13C Magnetic Resonance Imaging Can Detect Metabolic Changes Characteristic of Penumbra in Ischemic Stroke

Author:

Xu Yafang,Ringgaard Steffen,Mariager Christian Østergaard,Bertelsen Lotte Bonde,Schroeder Marie,Qi Haiyun,Laustsen Christoffer,Stødkilde-Jørgensen Hans

Abstract

Magnetic resonance imaging (MRI) is increasingly the method of choice for rapid stroke assessment in patients and for guiding patient selection in clinical trials. The underlying metabolic status during stroke and following treatment is recognized as an important prognostic factor; thus, new methods are required to monitor local biochemistry following cerebral infarction, rapidly and in vivo. Hyperpolarized MRI with the tracer [1-13C]pyruvate enables rapid detection of localized [1-13C]lactate production, which has recently been shown in patients, supporting its translation to assess clinical stroke. Here we show the ability of hyperpolarized 13C MRI to detect the metabolic alterations characteristic of endothelin-1-induced ischemic stroke in rodents. In the region of penumbra, determined via T2-weighted 1H MRI, both [1-13C]pyruvate delivery and [1-13C]pyruvate cellular uptake independently increased. Furthermore, we observed a 33% increase in absolute [1-13C]lactate signal in the penumbra, and we determined that half of this increase was due to increased intracellular [1-13C]pyruvate supply and half was mediated by enhanced lactate dehydrogenase-mediated [1-13C]lactate production. Future work to characterize the kinetics of delivery, uptake, and enzymatic conversions of hyperpolarized tracers following ischemic stroke could position hyperpolarized 13C MRI as an ideal technology for rapid assessment of the penumbra during the critical time window following ischemic stroke in patients.

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3