Comparison of Segmentation Methods in Assessing Background Parenchymal Enhancement as a Biomarker for Response to Neoadjuvant Therapy

Author:

Nguyen Alex Anh-Tu,Arasu Vignesh A.,Strand Fredrik,Li Wen,Onishi Natsuko,Gibbs Jessica,Jones Ella F.,Joe Bonnie N.,Esserman Laura J.,Newitt David C.,Hylton Nola M.

Abstract

Breast parenchymal enhancement (BPE) has shown association with breast cancer risk and response to neoadjuvant treatment. However, BPE quantification is challenging, and there is no standardized segmentation method for measurement. We investigated the use of a fully automated breast fibroglandular tissue segmentation method to calculate BPE from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for use as a predictor of pathologic complete response (pCR) following neoadjuvant treatment in the I-SPY 2 TRIAL. In this trial, patients had DCE-MRI at baseline (T0), after 3 weeks of treatment (T1), after 12 weeks of treatment and between drug regimens (T2), and after completion of treatment (T3). A retrospective analysis of 2 cohorts was performed: one with 735 patients and another with a final cohort of 340 patients, meeting a high-quality benchmark for segmentation. We evaluated 3 subvolumes of interest segmented from bilateral T1-weighted axial breast DCE-MRI: full stack (all axial slices), half stack (center 50% of slices), and center 5 slices. The differences between methods were assessed, and a univariate logistic regression model was implemented to determine the predictive performance of each segmentation method. The results showed that the half stack method provided the best compromise between sampling error from too little tissue and inclusion of incorrectly segmented tissues from extreme superior and inferior regions. Our results indicate that BPE calculated using the half stack segmentation approach has potential as an early biomarker for response to treatment in the hormone receptor–negative and human epidermal growth factor receptor 2–positive subtype.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3