Multicenter Repeatability Study of a Novel Quantitative Diffusion Kurtosis Imaging Phantom

Author:

Malyarenko Dariya I.,Swanson Scott D.,Konar Amaresha S.,LoCastro Eve,Paudyal Ramesh,Liu Michael Z.,Jambawalikar Sachin R.,Schwartz Lawrence H.,Shukla-Dave Amita,Chenevert Thomas L.

Abstract

Quantitative kurtosis phantoms are sought by multicenter clinical trials to establish accuracy and precision of quantitative imaging biomarkers on the basis of diffusion kurtosis imaging (DKI) parameters. We designed and evaluated precision, reproducibility, and long-term stability of a novel isotropic (i) DKI phantom fabricated using four families of chemicals based on vesicular and lamellar mesophases of liquid crystal materials. The constructed iDKI phantoms included negative control monoexponential diffusion materials to independently characterize noise and model-induced bias in quantitative kurtosis parameters. Ten test–retest DKI studies were performed on four scanners at three imaging centers over a six-month period. The tested prototype phantoms exhibited physiologically relevant apparent diffusion, Dapp, and kurtosis, Kapp, parameters ranging between 0.4 and 1.1 (×10−3 mm2/s) and 0.8 and 1.7 (unitless), respectively. Measured kurtosis phantom Kapp exceeded maximum fit model bias (0.1) detected for negative control (zero kurtosis) materials. The material-specific parameter precision [95% CI for Dapp: 0.013–0.022(×10−3 mm2/s) and for Kapp: 0.009–0.076] derived from the test–retest analysis was sufficient to characterize thermal and temporal stability of the prototype DKI phantom through correlation analysis of inter-scan variability. The present study confirms a promising chemical design for stable quantitative DKI phantom based on vesicular mesophase of liquid crystal materials. Improvements to phantom preparation and temperature monitoring procedures have potential to enhance precision and reproducibility for future multicenter iDKI phantom studies.

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3