Super-Resolution Hyperpolarized 13C Imaging of Human Brain Using Patch-Based Algorithm

Author:

Ma Junjie,Park Jae Mo

Abstract

Spatial resolution of metabolic imaging with hyperpolarized 13C-labeled substrates is limited owing to the multidimensional nature of spectroscopic imaging and the transient characteristics of dissolution dynamic nuclear polarization. In this study, a patch-based algorithm (PA) is proposed to enhance spatial resolution of hyperpolarized 13C human brain images by exploiting compartmental information from the corresponding high-resolution 1H images. PA was validated in simulation and phantom studies. Effects of signal-to-noise ratio, upsampling factor, segmentation, and slice thickness on reconstructing 13C images were evaluated in simulation. PA was further applied to low-resolution human brain metabolite maps of hyperpolarized [1-13C] pyruvate and [1-13C] lactate with 3 compartment segmentations (gray matter, white matter, and cerebrospinal fluid). The performance of PA was compared with other conventional interpolation methods (sinc, nearest-neighbor, bilinear, and spline interpolations). The simulation and the phantom tests showed that PA improved spatial resolution by up to 8 times and enhanced the image contrast without compromising quantification accuracy or losing the intracompartment signal inhomogeneity, even in the case of low signal-to-noise ratio or inaccurate segmentation. PA also improved spatial resolution and image contrast of human 13C brain images. Dynamic analysis showed consistent performance of the proposed method even with the signal decay along time. In conclusion, PA can enhance low-resolution hyperpolarized 13C images in terms of spatial resolution and contrast by using a priori knowledge from high-resolution 1H magnetic resonance imaging while preserving quantification accuracy and intracompartment signal inhomogeneity.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3