Author:
Beeman Scott C.,Osei-Owusu Patrick,Duan Chong,Engelbach John,Bretthorst G. Larry,Ackerman Joseph J. H.,Blumer Kendall J.,Garbow Joel R.
Abstract
The goal of this work was to demonstrate the utility of Bayesian probability theory-based model selection for choosing the optimal mathematical model from among 4 competing models of renal dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data. DCE-MRI data were collected on 21 mice with high (n = 7), low (n = 7), or normal (n = 7) renal blood flow (RBF). Model parameters and posterior probabilities of 4 renal DCE-MRI models were estimated using Bayesian-based methods. Models investigated included (1) an empirical model that contained a monoexponential decay (washout) term and a constant offset, (2) an empirical model with a biexponential decay term (empirical/biexponential model), (3) the Patlak–Rutland model, and (4) the 2-compartment kidney model. Joint Bayesian model selection/parameter estimation demonstrated that the empirical/biexponential model was strongly favored for all 3 cohorts, the modeled DCE signals that characterized each of the 3 cohorts were distinctly different, and individual empirical/biexponential model parameter values clearly distinguished cohorts of low and high RBF from one another. The Bayesian methods can be readily extended to a variety of model analyses, making it a versatile and valuable tool for model selection and parameter estimation.
Subject
Radiology Nuclear Medicine and imaging
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献