Renal DCE-MRI Model Selection Using Bayesian Probability Theory

Author:

Beeman Scott C.,Osei-Owusu Patrick,Duan Chong,Engelbach John,Bretthorst G. Larry,Ackerman Joseph J. H.,Blumer Kendall J.,Garbow Joel R.

Abstract

The goal of this work was to demonstrate the utility of Bayesian probability theory-based model selection for choosing the optimal mathematical model from among 4 competing models of renal dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data. DCE-MRI data were collected on 21 mice with high (n = 7), low (n = 7), or normal (n = 7) renal blood flow (RBF). Model parameters and posterior probabilities of 4 renal DCE-MRI models were estimated using Bayesian-based methods. Models investigated included (1) an empirical model that contained a monoexponential decay (washout) term and a constant offset, (2) an empirical model with a biexponential decay term (empirical/biexponential model), (3) the Patlak–Rutland model, and (4) the 2-compartment kidney model. Joint Bayesian model selection/parameter estimation demonstrated that the empirical/biexponential model was strongly favored for all 3 cohorts, the modeled DCE signals that characterized each of the 3 cohorts were distinctly different, and individual empirical/biexponential model parameter values clearly distinguished cohorts of low and high RBF from one another. The Bayesian methods can be readily extended to a variety of model analyses, making it a versatile and valuable tool for model selection and parameter estimation.

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3