An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction

Author:

Oh Changheun,Chung Jun-YoungORCID,Han Yeji

Abstract

Recent advances in deep learning have contributed greatly to the field of parallel MR imaging, where a reduced amount of k-space data are acquired to accelerate imaging time. In our previous work, we have proposed a deep learning method to reconstruct MR images directly from k-space data acquired with Cartesian trajectories. However, MRI utilizes various non-Cartesian trajectories, such as radial trajectories, with various numbers of multi-channel RF coils according to the purpose of an MRI scan. Thus, it is important for a reconstruction network to efficiently unfold aliasing artifacts due to undersampling and to combine multi-channel k-space data into single-channel data. In this work, a neural network named ‘ETER-net’ is utilized to reconstruct an MR image directly from k-space data acquired with Cartesian and non-Cartesian trajectories and multi-channel RF coils. In the proposed image reconstruction network, the domain transform network converts k-space data into a rough image, which is then refined in the following network to reconstruct a final image. We also analyze loss functions including adversarial and perceptual losses to improve the network performance. For experiments, we acquired k-space data at a 3T MRI scanner with Cartesian and radial trajectories to show the learning mechanism of the direct mapping relationship between the k-space and the corresponding image by the proposed network and to demonstrate the practical applications. According to our experiments, the proposed method showed satisfactory performance in reconstructing images from undersampled single- or multi-channel k-space data with reduced image artifacts. In conclusion, the proposed method is a deep-learning-based MR reconstruction network, which can be used as a unified solution for parallel MRI, where k-space data are acquired with various scanning trajectories.

Funder

Korea Health Industry Development Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3