The Mechanical Behavior of High-Strength Concrete-Filled Steel Tubes: A Review

Author:

Pinto Clemente1ORCID,Fonseca João1

Affiliation:

1. Centre of Materials and Civil Engineering for Sustainabilty (C-MADE), Department of Civil Engineering and Architecture, University of Beira Interior, Calçada Fonte do Lameiro Edifício II das Engenharias, 6201-001 Covilhã, Portugal

Abstract

This review explores the mechanical behavior of high-strength concrete-filled steel tubes (CFSTs), focusing on their structural integrity and failure mechanisms. This study highlights the crucial role of the steel tube in providing passive confinement, which limits crack progression and enhances the ductility of the concrete. The concept of concrete as a structural system composed of micro- and mini-pillars, derived from rock mechanics, can be a useful approach to understanding CFST behavior. The review identifies that the strength index (SI) can, in some cases, decrease with an increase in the confinement factor (ξ), particularly in high-strength and ultrahigh-strength concrete (HSC and UHSC), which seems to be different to the common understanding of confinement. The experimental results show that different crack patterns and concrete compositions significantly impact the CFST performance. For example, silica fume in concrete mixtures can reduce the strength enhancement despite increasing the unconfined compressive strength. This work advocates for a mechanistic approach to better comprehend the interaction between concrete and steel tubes, emphasizing the need for optimized concrete mixtures and improved mechanical interaction. Future research should focus on the potential of HSC and UHSC in CFST, addressing factors such as crack progression, confinement effects, and concrete–steel interaction.

Funder

Portuguese national funds

Publisher

MDPI AG

Reference41 articles.

1. Concrete-Filled Steel Tube Arch Bridges in China;Zheng;Engineering,2018

2. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members;Han;J. Constr. Steel Res.,2014

3. Shi, J., Luo, C., and Wang, X. (2024). Application of concrete-filled steel tubular arch bridges and study on ultimate load-carrying capacity. Buildings, 14.

4. Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs);Abed;J. Constr. Steel Res.,2013

5. Structural behavior of UHPC filled steel tube columns under axial loading;Chen;Thin-Walled Struct.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3