Incorporating Pavement Friction Management into Pavement Asset Management Systems: State Department of Transportation Experience

Author:

Elkhazindar Alaa,Hafez MarwanORCID,Ksaibati Khaled

Abstract

Pavement friction is an important topic addressed by transportation agencies to reduce the number of traffic crashes and fatalities caused by poor friction between tires and pavement surface. Pavement friction management (PFM) provides the essential tools and techniques to effectively evaluate pavement friction conditions and provide informed maintenance decisions using surface treatments. State Departments of Transportation (DOTs) utilize various engineering practices to collect and analyze friction-related data, crash data, and traffic data. In addition, state DOTs tend to employ different techniques and policies to manage the pavement friction depending on budget levels, strategic objectives, and climate conditions. Due to these diversified practices in friction management, in this study, we intend to provide a comprehensive review of the state of the practice among state DOTs. Online surveys were analyzed using descriptive and statistical correlation analyses to study the experience of state DOTs with managing pavement friction, considering feedback from 32 state DOTs in the USA. Exploring the methods to manage the pavement friction used by state agencies will help researchers and officials know more about the strategies towards an effective PFM. It also presents opportunities to enhance the approaches of the followed programs and highlight the gaps of the current practices. The results obtained from the survey identify the practical policies and propose future enhancements to maximize the value of pavement assets and promote safety.

Funder

Wyoming Department of Transportation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference42 articles.

1. Guide for Pavement Friction

2. Evaluation of Tire/Surfacing/Base Contact Stresses and Texture Depth

3. Linking roadway crashes and tire–pavement friction: a case study

4. Friction Management

5. Managing Pavement Friction of Wyoming’s Roads Considering Safety;Hafez,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3