Separation of Floodplain Flow and Bankfull Discharge: Application of 1D Momentum Equation Solver and MIKE 21C

Author:

Sarker Shiblu1ORCID

Affiliation:

1. Bureau of Watershed Management and Modeling, St. Johns River Water Management District, Palatka, FL 32177, USA

Abstract

A floodplain is an area of low-lying land adjacent to a river, stream, or other water body that is regularly inundated by water during periods of high flow. Floodplains typically have relatively flat terrain and are composed of sediments deposited by the river over time. Floodplain flow refers to the movement of water across the surface of the floodplain during periods of high flow. This flow can occur as a result of water spilling over the river banks or seeping into the ground and then re-emerging on the surface of the floodplain. Bankfull discharge is the flow of water that just fills the channel of a river or stream to the top of its banks. It is the point at which the river or stream is at its maximum capacity without overflowing onto the floodplain. Bankfull discharge is often used as a reference point for assessing flood risk and planning floodplain management strategies. To examine the bank-to-bank hydro-morphodynamics of a river, it is necessary to comprehend the flow distribution throughout the main stream and floodplain. Along with river hydraulics, bankfull discharge is a crucial parameter for estimating river bank erosion. For evaluating the distribution and generation of river flow over the floodplain and main stream, a variety of modeling tools and approaches are available. This study investigates methods for separating floodplain flow and bankfull discharge from observed discharge data using the one-dimensional momentum equation. A two-dimensional modeling tool (MIKE 21C) was also employed to investigate the usefulness of the proposed method in a region with an enormous floodplain.

Publisher

MDPI AG

Subject

Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Reference46 articles.

1. Goudie, A. (2004). Encyclopedia of Geomorphology, Springer.

2. Critical nodes in river networks;Sarker;Sci. Rep.,2019

3. Sarker, S. (2021). Investigating Topologic and Geometric Properties of Synthetic and Natural River Networks under Changing Climate. [Ph.D. Thesis, University of Central Florida].

4. Analyzing the critical locations in response of constructed and planned dams on the Mekong River Basin for environmental integrity;Gao;Environ. Res. Commun.,2022

5. Copeland, R.R., McComas, D.N., Thorne, C.R., Soar, P.J., and Jonas, M.M. (2001). Hydraulic design of stream restoration projects, Engineer Research and Development Center Vicksburg ms Coastal and Hydraulicslab, Technical Report.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3