Abstract
The aim of this work is to reduce the overexploitation of river sand by proposing a combination of crushed sand and river sand to develop an optimal mix design for concrete. The approach used consisted of a physical, chemical, and mineralogical characterization of aggregates from three quarries located in Yaoundé (Cameroon), followed by the formulation of concrete by substituting 100%, 90%, 80%, 70%, 50%, and 0% of the river sand with crushed sand. A physical and mechanical characterization of the concrete was carried out, as well as a microstructural characterization using SEM/EDS. The results showed that the concrete made of crushed sand only had a higher drying shrinkage at a young age compared to the river sand concrete. Compared to conventional concrete (made using 100% of river sand), the concrete with 50% crushed sand reduces its slump value, has a lower porosity, and has a compressive strength value of 26.3 MPa at 28 days, which is very similar to that of conventional concrete (26.7 MPa). Moreover, it was found that the strength of the concrete increased by 14.4% and 20.6%, respectively, for concrete without crushed sand (BSR0) and concrete with 50% crushed sand (BSR50) by increasing the curing age from 28 to 90 days. The static modulus of elasticity for conventional concrete BSR0 and BSR50 concrete with 50% crushed sand at 90 days was 23.7 and 21.8 GPa, respectively. Thus, combining crushed sand with alluvial sand is a good method to reduce the depletion of alluvial sands in Cameroon.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献