Abstract
A three-dimensional non-linear finite-element model (FEM) was constructed using a commercial software (ATENA-Studio) to investigate the transverse load distribution behavior of adjacent precast prestressed concrete box-girder bridges. An innovative connection between box girders was used, where transverse post-tensioning was applied at the top flanges only eliminating the need for intermediate transverse diaphragms. The FEM was validated in terms of deflections, strains, cracking and ultimate loads against experimental results previously reported by the authors. The validated FEM was then used to perform a parametric study investigating the influence of adding concrete topping, load location, and bridge width on the transverse load distribution behavior of the newly developed connection. The results of the FEM demonstrated the efficiency of concrete topping in limiting mid-span deflections up to 25%. Additionally, the maximum live load moment distribution factors (LLMDFs) for different load locations and bridge widths were evaluated.
Funder
Natural Sciences and Engineering Research Council
Canadian Precast Prestressed Concrete Institute
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献