Author:
Cui Wenbin,Chen Xuan,Chen Chao,Cheng Li,Ding Junliang,Zhang Hui
Abstract
A liquid nitrogen cooling system was developed to ensure the successful ultrasonic testing of composite materials to characterize the very High Cycle Fatigue (VHCF) of carbon fiber reinforced plastics (CFRP). The fatigue failure of CFRP occurs even in the very high cycle range and there is no traditional fatigue limit. The S–N curve of the CFRP presents a step whose characteristics appear in the transition between high cycle and very high cycle fatigue. The damage evolution of CFRP in the same field of view is investigated. The morphology of damaged CFRP composites under ultrasonic loading is described by three characteristics: matrix damage at the intersection of fiber bundles, near fiber bundle parallel section matrix cavity and matrix penetration. With the increasing of cycles, the damage process is also presented in turn according to these three characteristics. The post-fatigue bending modulus changed significantly from the pre-fatigue values, indicating that the VHCF had a considerable impact on the mechanical properties of the composite. An evolution threshold was introduced from the S–N curve to determine the fatigue evolution law from the high cycle regime to the very high cycle regime.
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献