Structural Properties and Water Uptake of SrTi1−xFexO3−x/2−δ

Author:

Miruszewski Tadeusz,Dzierzgowski KacperORCID,Winiarz PiotrORCID,Wachowski SebastianORCID,Mielewczyk-Gryń AleksandraORCID,Gazda Maria

Abstract

In this work, Fe-doped strontium titanate SrTi1−xFexO3−x/2−δ, for x = 0–1 (STFx), has been fabricated and studied. The structure and microstructure analysis showed that the Fe amount in SrTi1−xFexO3−x/2−δ has a great influence on the lattice parameter and microstructure, including the porosity and grain size. Oxygen nonstoichiometry studies performed by thermogravimetry at different atmospheres showed that the Fe-rich compositions (x > 0.3) exhibit higher oxygen vacancies concentration of the order of magnitude 1022–1023 cm−3. The proton uptake investigations have been done using thermogravimetry in wet conditions, and the results showed that the compositions with x < 0.5 exhibit hydrogenation redox reactions. Proton concentration at 400 °C depends on the Fe content and was estimated to be 1.0 × 10−2 mol/mol for SrTi0.9Fe0.1O2.95 and 1.8 × 10−5 mol/mol for SrTi0.5Fe0.5O2.75. Above 20 mol% of iron content, a significant drop of proton molar concentrations at 400 °C was observed. This is related to the stronger overlapping of Fe and O orbitals after reaching the percolation level of approximately 30 mol% of the iron in SrTi1−xFexO3−x/2−δ. The relation between the proton concentration and Fe dopant content has been discussed in relation to the B-site average electronegativity, oxygen nonstoichiometry, and electronic structure.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3