Optimized Estimation of Leaf Mass per Area with a 3D Matrix of Vegetation Indices

Author:

Chen Yuwen,Sun Jia,Wang LuncheORCID,Shi Shuo,Gong Wei,Wang Shaoqiang,Tagesson TorbernORCID

Abstract

Leaf mass per area (LMA) is a key plant functional trait closely related to leaf biomass. Estimating LMA in fresh leaves remains challenging due to its masked absorption by leaf water in the short-wave infrared region of reflectance. Vegetation indices (VIs) are popular variables used to estimate LMA. However, their physical foundations are not clear and the generalization ability is limited by the training data. In this study, we proposed a hybrid approach by establishing a three-dimensional (3D) VI matrix for LMA estimation. The relationship between LMA and VIs was constructed using PROSPECT-D model simulations. The three-VI space constituting a 3D matrix was divided into cubical cells and LMA values were assigned to each cell. Then, the 3D matrix retrieves LMA through the three VIs calculated from observations. Two 3D matrices with different VIs were established and validated using a second synthetic dataset, and two comprehensive experimental datasets containing more than 1400 samples of 49 plant species. We found that both 3D matrices allowed good assessments of LMA (R2 = 0.76 and 0.78, RMSE = 0.0016 g/cm2 and 0.0017 g/cm2, respectively for the pooled datasets), and their results were superior to the corresponding single Vis, 2D matrices, and two machine learning methods established with the same VI combinations.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Open Research Fund of the State Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University

Swedish National Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3