Improving the Robustness of the MTI-Estimated Mining-Induced 3D Time-Series Displacements with a Logistic Model

Author:

Shi Jiancun,Yang ZefaORCID,Wu Lixin,Qiao Siyu

Abstract

The previous multi-track InSAR (MTI) method can be used to retrieve mining-induced three-dimensional (3D) surface displacements with high spatial–temporal resolution by incorporating multi-track interferometric synthetic aperture radar (InSAR) observations with a prior model. However, due to the track-by-track strategy used in the previous MTI method, no redundant observations are provided to estimate 3D displacements, causing poor robustness and further degrading the accuracy of the 3D displacement estimation. This study presents an improved MTI method to significantly improve the robustness of the 3D mining displacements derived by the previous MTI method. In this new method, a fused-track strategy, instead of the previous track-by-track one, is proposed to process the multi-track InSAR measurements by introducing a logistic model. In doing so, redundant observations are generated and further incorporated into the prior model to solve 3D displacements. The improved MTI method was tested on the Datong coal mining area, China, with Sentinel-1 InSAR datasets from three tracks. The results show that the 3D mining displacements estimated by the improved MTI method had the same spatial–temporal resolution as those estimated by the previous MTI method and about 33.5% better accuracy. The more accurate 3D displacements retrieved from the improved MTI method can offer better data for scientifically understanding the mechanism of mining deformation and assessing mining-related geohazards.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3