Author:
Jing He,Cheng Yongqiang,Wu Hao,Wang Hongqiang
Abstract
Data-driven deep learning has been well applied in radar target detection. However, the performance of the detection network is severely degraded when the detection scene changes, since the trained network with the data from one scene is not suitable for another scene with different data distribution. In order to address this problem, an adaptive network detector combined with scene classification is proposed in this paper. Aiming at maximizing the posterior probability of the feature vectors, the scene classification network is arranged to control the output ratio of a group of detection sub-networks. Due to the uncertainty of classification error rate in traditional machine learning, the classifier with a controllable false alarm rate is constructed. In addition, a new network training strategy, which freezes the parameters of the scene classification network and selectively fine-tunes the parameters of detection sub-networks, is proposed for the adaptive network structure. Comprehensive experiments are carried out to demonstrate that the proposed method guarantees a high detection probability when the detection scene changes. Compared with some classical detectors, the adaptive network detector shows better performance.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献