A High Latitude Model for the E Layer Dominated Ionosphere

Author:

Kamal SumonORCID,Jakowski NorbertORCID,Hoque Mohammed Mainul,Wickert Jens

Abstract

Under certain conditions, the ionization of the E layer can dominate over that of the F2 layer. This phenomenon is called the E layer dominated ionosphere (ELDI) and occurs mainly in the auroral regions. In the present work, we model the variation of the ELDI for the Northern and Southern Hemispheres. Our proposed Neustrelitz ELDI Event Model (NEEM) is an empirical, climatological model that describes ELDI characteristics by means of four submodels for selected model observables, considering the dependencies on appropriate model drivers. The observables include the occurrence probability of ELDI events and typical E layer parameters that are important to describe the propagation medium for High Frequency (HF) radio waves. The model drivers are the geomagnetic latitude, local time, day of year, solar activity and the convection electric field. During our investigation, we found clear trends for the model observables depending on the drivers, which can be well represented by parametric functions. In this regard, the submodel NEEM-N characterizes the peak electron density NmE of the E layer, while the submodels NEEM-H and NEEM-W describe the corresponding peak height hmE and the vertical width wvE of the E layer electron density profile, respectively. Furthermore, the submodel NEEM-P specifies the ELDI occurrence probability %ELDI. The dataset underlying our studies contains more than two million vertical electron density profiles covering a period of almost 13 years. These profiles were derived from ionospheric GPS radio occultation observations on board the six COSMIC/FORMOSAT-3 satellites (Constellation Observing System for Meteorology, Ionosphere and Climate/Formosa Satellite Mission 3). We divided the dataset into a modeling dataset for determining the model coefficients and a test dataset for subsequent model validation. The normalized root mean square deviation (NRMS) between the original and the predicted model observables yields similar values across both datasets and both hemispheres. For NEEM-N, we obtain an NRMS varying between 36.1% and 47.1% and for NEEM-H, between 6.1% and 6.3%. In the case of NEEM-W, the NRMS varies between 38.5% and 41.1%, while it varies between 56.5% and 60.3% for NEEM-P. In summary, the proposed NEEM utilizes primary relationships with geophysical and solar wind observables, which are useful for describing ELDI occurrences and the associated changes of the E layer properties. In this manner, the NEEM paves the way for future prediction of the ELDI and of its characteristics in technical applications, especially from the fields of telecommunications and navigation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3