Abstract
Radio occultation (RO) sensor measurements have critical roles in numerical weather prediction (NWP) by complementing microwave and infrared sounder measurements with information of the atmospheric profiles at high accuracy, precision, and vertical resolution. This study evaluates Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) wet temperature and humidity data products’ consistency and stability through inter-comparison with SNPP advanced technology microwave sounder (ATMS) measurements. Through the community radiative transfer model (CRTM), brightness temperature (BT) at SNPP ATMS channels are simulated with COSMIC-2 retrieved atmospheric profiles from two versions of the University Corporation for Atmospheric Research (UCAR) wet profiles (WETprf and WETpf2) as inputs to the CRTM simulation. The analysis was focused on ATMS sounding channels CH07–14 and CH19–22 with sounding weighting function peak heights from 3.2 to 35 km. The COSMIC-2 vs. ATMS inter-comparison indicates that their BT biases are consistent, and the latitudinal difference is <0.3 K over three latitudinal regions. The differences between the two versions of UCAR COSMIC-2 wet profiles are identified and attributed to the differences in the implementation of 1DVAR retrieval algorithms. The stability between UCAR near real-time COSMIC-2 wet profile data and ATMS measurements is also well-maintained. It is demonstrated that the well-sustained quality of COSMIC-2 RO data makes itself a well-suited reference sensor to capture the calibration update of SNPP ATMS. Furthermore, the impacts of the assimilation of COSMIC-2 data into the European Centre for Medium-Range Weather Forecasts (ECMWF) model after 25 March 2020, are evaluated by trending observation-minus-background (O-B) biases, which confirms the statistically significant positive impacts of COSMIC-2 on the ECMWF reanalysis. The validation of stability and consistency between COSMIC-2 and SNPP ATMS ensures the quality of RO and microwave sounder data assimilated into the NWP models.
Funder
National Oceanic and Atmospheric Administration
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献