Identifying Dynamic Changes in Water Surface Using Sentinel-1 Data Based on Genetic Algorithm and Machine Learning Techniques

Author:

Huang Zelin,Wu Wei,Liu HongbinORCID,Zhang Weichun,Hu Jin

Abstract

The knowledge of water surface changes provides invaluable information for water resources management and flood monitoring. However, the accurate identification of water bodies is a long-term challenge due to human activities and climate change. Sentinel-1 synthetic aperture radar (SAR) data have been drawn, increasing attention to water extraction due to the availability of weather conditions, water sensitivity and high spatial and temporal resolutions. This study investigated the abilities of random forest (RF), Extreme Gradient Boosting (XGB) and support vector machine (SVM) methods to identify water bodies using Sentinel-1 imageries in the upper stream of the Yangtze River, China. Three sets of hyper-parameters including default values, optimized by grid searches and genetic algorithms, were examined for each model. Model performances were evaluated using a Sentinel-1 image of the developed site and the transfer site. The results showed that SVM outperformed RF and XGB under the three scenarios on both the validated and transfer sites. Among them, SVM optimized by genetic algorithm obtained the best accuracy with precisions of 0.9917 and 0.985, kappa statistics of 0.9833 and 0.97, F1-scores of 0.9919 and 0.9848 on validated and transfer sites, respectively. The best model was then used to identify the dynamic changes in water surfaces during the 2020 flood season in the study area. Overall, the study further demonstrated that SVM optimized using a genetic algorithm was a suitable method for monitoring water surface changes with a Sentinel-1 dataset.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3