Study of the Reinforcement Effect in (0.5–x)TeO2–0.2WO3–0.1Bi2O3–0.1MoO3–0.1SiO2–xCNDs Glasses Doped with Carbon Nanodiamonds

Author:

Kozlovskiy Artem L.ORCID,Tleulessova Indira,Borgekov Daryn B.,Uglov Vladimir V.,Anishchik Viktor M.,Zdorovets Maxim V.ORCID,Shlimas Dmitriy I.ORCID

Abstract

The purpose of this study is to examine the influence of carbon nanodiamonds on the reinforcement and hardening of telluride glasses, as well as to establish the dependence of the strengthening properties and optical characteristics of glasses on CND concentration. According to X-ray diffraction data, the synthesized glasses have an amorphous structure despite the addition of CNDs, and at high concentrations of CNDs, reflections characteristic of small crystalline particles of carbon nanodiamonds are observed. An analysis of the strength properties of glasses depending on the concentration of the CND dopant showed that an increase in the CND concentration to 0.10–0.15 mol. leads to an increase in hardness by 33–50% in comparison with undoped samples. The studies carried out to determine the resistance to external influences found that doping leads to an increase in the resistance of strength characteristics against destruction and embrittlement, and in the case of high concentrations, the change in strength properties is minimal, which indicates a high ceramic stability degree. The study of the radiation resistance of synthesized glasses found that the addition of CNDs leads to an increase in resistance to radiation damage when irradiated with gamma rays, while also maintaining resistance to high radiation doses. The study of the shielding characteristics found that the addition of CNDs is most effective in shielding gamma rays with energies of 130–660 MeV.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3