A Nanoscale Sensor Based on a Toroidal Cavity with a Built-In Elliptical Ring Structure for Temperature Sensing Application

Author:

Liu FengORCID,Yan ShubinORCID,Shen Lifang,Liu PengweiORCID,Chen Lili,Zhang Xiaoyu,Liu Guang,Liu Jilai,Li Tingsong,Ren Yifeng

Abstract

In this article, a refractive index sensor based on Fano resonance, which is generated by the coupling of a metal–insulator–metal (MIM) waveguide structure and a toroidal cavity with a built-in elliptical ring (TCER) structure, is presented. The finite element method (FEM) was employed to analyze the propagation characteristics of the integral structure. The effects of refractive index and different geometric parameters of the structure on the sensing characteristics were evaluated. The maximum sensitivity was 2220 nm/RIU with a figure of merit (FOM) of 58.7, which is the best performance level that the designed structure could achieve. Moreover, due to its high sensitivity and simple structure, the refractive index sensor can be applied in the field of temperature detection, and its sensitivity is calculated to be 1.187 nm/℃.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3